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Introduction 
In a previous paper [1] we have described a small size 

cold plasma jet source, based on a radiofrequency discharge 
with bare electrodes (without barriers), operated at 
atmospheric pressure, and we have demonstrated its 
applicability for polymer surface modification. In this 
contribution we focus on the characterization of the jet 
expanding from the source, focusing on the emitting species 
and gas temperature distribution, as obtained from optical 
emission spectroscopy measurements.  

 
Experimental set-up 

The scheme of the plasma jet source is presented in Fig. 1. The 
operation details of the source were presented in [2]. The 

feeding gas (Argon 99.999 % purity) flows between the inner electrode and a ceramic insulator. The 
discharge is generated at 13.56MHz in the space limited by the inner electrode and the nozzle and the 
ionized gas expands as a jet of 1 mm diameter and up to 5 mm length (visually evaluated), depending on 
the working parameters (gas mass flow rate and RF power between 500–8000 sccm, and 7-16 W, 
respectively). The electrodes are cooled by the working gas itself and ambient atmosphere. The plasma 
jet was investigated using a 500is/sm Bruker spectrograph equipped with a 1024 x 255 pixels Andor Idus 
CCD camera. The axial part of the plasma jet was focused on the spectrograph entrance slit by means of 
an 80mm positive lens and was investigated along the flow direction with a spatial resolution of 23µm. 

 
Results and discussions 
Fig. 2 shows an emission spectrum recorded near the discharge, at 0.58 mm from the nozzle, for 

an RF applied power of 14 W and 4500sccm Ar mass flow rate. There can be observed the strong 
emission of the excited feeding gas (ArI) and the weaker emission of radical impurities (OH, N2, OI). 
Fig. 3 presents the axial distribution of the lines or band heads intensities, each normalized at its 
maximum, corresponding to the following transitions: OH (A²Σ+─Χ² Π v’-v” 0-0, λ =306.4 nm); N2 
(SPS C3Πu→B3Πg, v’-v”, λ =380.5nm), ArI (λ= 772.22 nm) and OI (λ= 776.95 nm). The excited OI and 
ArI species dominate the emission in the nozzle vicinity (up to 1.5mm) while the molecular excited 
species dominate downstream at larger distances. The gas temperature (considered equal with OH 
rotational temperature) along the jet axis was determined by simulation of the OH recorded spectra [3]. 
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Fig.1: The plasma source schematic. 
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Fig.4 a) and b) presents the temperature distributions along the plasma jet for different working 
parameters (power values in the range 8-16W, and Ar mass flow rates between 3500-8000 sccm). The 
temperature lies in the range 310K-380K and for a given set of working parameters it decreases only 
slightly along the plasma jet. At low Ar mass flow rates (2000 sccm) the plasma source is not efficiently 
cooled by the flowing gas, which leads to a higher jet temperature (420K at 14 W).  

Conclusions 
The low temperature of the plasma source may assure nondestructive treatment of temperature 

sensible materials (polymers, textiles, etc.). Also, according to the reported measurements, which show 
that the radical emission dominates at large distances, the wettability improvement of polymers observed 
after treatment in [1] is mainly due to plasma O and OH radicals reaction with the polymer surface. Such 
as, O etching can be responsible for the surface roughening while attachment of OH groups modifies the 
surface chemistry. That does not exclude the possible contribution of other species or of UV radiation 
coming from the discharge, which was not possible to evaluate at present.  
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Fig.2: A spectrum  recorded at 0.58mm from the nozzle. Fig.3: Distribution of the normalized spectral 
intensities along the plasma jet axis. 
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Fig.4: Axial distribution of plasma jet temperature: a) 5200 sccm Ar and diverse RF applyed powers; 

 b) 14W RF applyed power and diverse Ar mass flow rates. The error bars were presented for only one 
curve to avoid raveling them. 
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