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Frequently when treating low pressure, low temperature discharges the Boltzmann Relation 
ne = ne0 exp(eV/kTe) is introduced without questioning whether it is a valid assumption. The 
electron momentum equation in the fluid approximation is given by –  
kTe/mne gradne + e/m gradV + vediv.ve + evexB/m + ve(Z+νe) = 0 (1) 
where m is the electron mass ne is the electron density, Te the electron temperature, ve the electron 
velocity, B the applied magnetic field, Z the ionization rate by electron impact, and νe the electron 
collision frequency for momentum transfer.  We label the terms in (1) as 1, 2, 3, 4, 5, and 6.  The 
Boltzmann Relation is equivalent to (1), if and only if, terms 1 and 2 dominate over all other 
terms.  That implies that there are no collisions (νe= 0), there is no volume generation (Z=0), there 
is no applied magnetic field (B = 0), and that electron inertia can be ignored (m = 0).  Now for a 
collisionless plasma and when Z also is small, the third term has its maximum value at the ‘plasma 
edge’ and its relative magnitude, given that the Bohm criterion vi

2 = kTe/M, where M is the ion 
mass, is ‘satisfied’ there, is smaller by a factor m/M and so it can be justifiably ignored.  

Recent work by Zimmerman et al. (2008), (2010) has examined the validity of the 
Boltzmann Relation in an active collisional plasma with an applied axial magnetic field in 
cylindrical geometry, thus νe, Z and B are all non-zero and thus terms 4, 5, and 6 cannot be 
ignored a priori and how good an approximation the Boltzmann Relation is must be examined on 
a case by case basis.  It has also been claimed that it holds generally in a differential form at the 
plasma edge (Allen(2008)).  Again in general this is not true as we show below.  

We continue in cylindrical geometry with axisymmetry considering both ions and electrons 
and thus recover the results given by Forrest and Franklin (1966).  Thus with unit vectors r, θ, k 
we introduce n = ne = ni assuming quasi-neutrality, u = ver/cs = vir/cs as is required for the radial 
transport to be ambipolar, B = Bk, δe = νe/Z, δi = νi/Z, η = -eV/kTe, ωce = eB/m and ωci = eB/M to 
obtain veθ = verωce/(νe+Z), viθ = -virωci/(νe+Z).  Introducing R = rZ/cs we end up with dimensionless 
equations for u, n, and η – 

du/dR = (1 – u/R + δu2)/(1 – u2), (2) 
1/n dn/dR = (u2/R – u – δu)/(1 –u2), (3) 
and, dη/dR = (-u2/R + u +δiu + δemu3)/(1 – u2), (4) 

where δ = δem +δi, δi = 1 + νi/Z and δem = m/M (1 + νe/Z)[1+ ωce
2/(νe + Z)2] , having assumed that 

ωci is small compared with the other frequencies, i.e. the ions are not magnetized. Near u = 1 
putting u = 1-ε we find that the right hand sides of (3) and (4) behave identically with 1/ε, i.e. they 
go to infinity in precisely the same manner.  

Now from (3) and (4) we deduce that 1/n dn/dR + dη/dR = - δem. (5) 
But δem is positive definite, u is positive and monotonically increasing and (5) is not 

singular where u = 1, i.e. at the plasma edge, and we find that instead of (5) integrating to give      
n = n0 exp(-η), we have – n/n0 = exp(-η) . exp(-∫δemudR) (6) 
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and the second term on the right hand side is a local measure of the extent to which the Boltzmann 
Relation is not satisfied.  It is monotonically increasing in magnitude with R and thus is consistent 
with the results given by Zimmerman et al. who in coaxial geometry recovered (2), (3), and (4) 
with the origin for R and η at the point where dη/dR = 0.  And it is not true that where u = 1 the 
Boltzmann relation is satisfied.  

Plasmas in a magnetic field in this geometry were also considered by Sternberg, Godyak 
and Hoffman  (2006) who produced a graph (Figure 12) representing the various regions for 
magnetized plasmas with B and p (the pressure) as axes.  If one assumes that νe/p and νi/p are 
constant then the regions are divided by straight lines at 450 for which ωce >/< νe, ωceωci>/< νeνi 
and ωci >/< νi.  They used a physically more realistic description of the charged particle motion 
and this results in the straight lines becoming slightly curved.  

We summarize these results in a Table describing the electrons, plasma, and ions, as being 
magnetized M, or unmagnetized U -  

          Electrons         Plasma           Ions 
ωci > νi    M  M  M 
ωci < νi    M  M  U 
ωceωci > νeνi   M  M  U 
ωceωci < νeνi   M  U  U 
ωce > νe    M  U  U 
ωce < νe    U  U  U 
 
The transition regions coincide with ωci = νi, ωciωce = νeνi, and ωce = νe , and typically range 

over an order of magnitude in the parameter concerned.  
Zimmerman et al.(2008, 2010) considered the situation where the magnetic field generated 

by the azimuthal motion of the electrons and ions is such that it becomes comparable in magnitude 
to that applied.  But this field varies with position since the azimuthal speeds are proportional to 
the radial speeds, and are greatest at the plasma edge.  

They introduced a measure of departure from uniformity of the total field in a similar 
manner to their measure for departure from the Boltzmann Relation, in terms of an integral, but in 
a similar manner this effect can be given a local value varying with radial position and in their 
coaxial geometry is opposite in sign in the inner and outer regions.  The effect is largest for        
ωce >> νe + Z.  

A full consideration of the problem of joining plasma and sheath smoothly, in the presence 
of a magnetic field, taking into account the rotary motion in the sheath as the electron density 
decreases and the ion radial motion accelerates, awaits treatment, but no doubt is simplified by the 
fact that the Bohm Criterion has significance, and in the sheath it is usual to assume that Z = 0 and 
νi =0, however the transition region described by Franklin and Ockendon (1970) would be 
modified by the need to include another parameter being the ratio of the electron gyro-radius to 
the plasma size . 
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