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Electrons in gas under an electric field are always forced to circulate the loop of a flight
and a collision, and the circulation flow rate distribution autonomously settles in a steady form so
as to afford the continuity of the electron flow in energy space. The steady flow rate distribution
Ψsn(ε0) has a unique form determined by the energy dispersion functions L(ε′0,ε0) through the
circulating loop, and gives electrons in flight a steady energy distribution. Essential is the steady
circulation flow of electrons with the rate distribution satisfying the continuity in energy space, but
is not the energy distribution of electrons in flight which has no self-controlling path. The electron
energy distribution is only a passive state function given by the electron flow rate distribution
Ψsn(ε0). The steady state in nature is self-consistently formed as above. The same process has
been realized in the FTI method[1, 2], and therefore it can easily give exact data on the energy
distribution and transport properties of electrons in the stationary PT (SPT) condition. This is a
new idea that we believe to be true not only for electrons in gas but also in all the gas systems.

One more new acquaintance is given in this paper on the energy being exerted to maintain
the flow rate distribution of electrons in a steady form. In order to understand the results of
calculation clearly, it is assumed that only elastic isotropic collision occurs. A hypothetical mass
ratio between an electron and a gas particle of 1/100 is adopted to make the relaxation fast. Three
collision probabilities in unit distance dependent on the powers of electron energy Nq0εr, [r =
1/2,0,−1/2 ] [cm−1] are used to see the influence of energy dependent collisions, where q0 is
determined so that electrons may have the same mean energy in respective r values under the
reduced electric field E/N of 10 Td.

In the FTI method, the loop energy dispersion functions L(ε′0,ε0), that describe the energy
dispersion probabilities in passing through a trajectory motion and a collision for an electron
started with energy ε0 are prepared at first, and operated iteratively to a normalized distribution of
arbitrary form as

Ψsn(ε′0) = L(ε′0,ε0)⊗Ψsn(ε0). (ε′0 → ε0) (1)

Here, ⊗ implies the overlap integral[2]. Even started from different distributions, a steady flow
rate distribution Ψsn(ε0) in normalized form is uniquely obtained as shown in Fig.1. When Ψsn(ε0)
is determined, the staying time distribution Ff (ε) of flowing electrons is obtained by operating the
energy dispersion probabilities in flight Hf (ε,ε0) once to Ψsn(ε0).

Ff (ε) = Hf (ε,ε0)⊗Ψsn(ε0). (2)

Accordingly, the normalized energy distribution of electrons in flight Fn(ε) in SPT condition is
obtained. by normalizing Ff (ε) with the mean flight time 〈τ〉=

R ∞
0 Ff 0(ε)dε as

Fn(ε) = Ff (ε)/〈τ〉. (3)

Since L(ε′0,ε0) describe the probabilities of energy dispersion due to a trajectory motion and
a collision for an electron started with energy ε0, the probabilities of energy gain in a circulation
are given by the energy gain function

LGε(ε0) =
Z ∞

0
(ε′0 − ε0)L(ε′0,ε0)dε′0 (4)
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Table 1: Basic data of electrons for 3 values of r

Nq0εr cm−1 40ε−1/2 27.25ε0 18.3ε1/2

〈ε〉 eV 1.5625 1.5627 1.5646
〈ν〉 109s−1 2.3723 1.9147 1.6981
〈τ〉 10−10s 4.2152 5.2229 5.8890
〈EGx(ε0)〉 10−2eV 3.1250 3.7644 4.0589
〈0.02ε′Ψc(ε′)〉 10−2eV 3.1250 3.7644 4.0589
〈RGε(ε0)〉+− 10−2eV 0.96316 1.7537 2.4731
〈Gλ〉 10−2cm 2.8692 3.6698 4.1808
W 106cms−1 7.4138 7.2075 6.8924

and the energy gain rate in a circulation of a flowing electron Ψsn(ε0) is given as

RGε(ε0) = LGε(ε0)Ψsn(ε0). (5)

RGε(ε0) gives the energy being exerted for maintaining the flow rate distribution in the converged
form Ψsn(ε0) in a circulation. In Fig.2, LGε(ε0) and RGε(ε0) calculated for three r values are
shown. The positive and negative areas in RGε(ε0) are the same showing the reciprocal relation in
the convergence, and have large values for large r.

〈RGε(ε0)〉 =
Z ∞

0
(1/2)|RGε(ε0)|dε0. [ev/cycle] (6)

〈RGε(ε0)〉 is named the convergence energy. It is noted that the balance of energy gain and loss
in a circulation is not satisfied in respective narrow energy ranges due to the energy expendi-
ture for convergence even in steady state though achieved in the integrated value in full energy
range, as is seen in Fig.2. In Table 1, some basic SPT raw data are shown for three values of r
with usual accuracy in the FTI method. In which, the energy gain E〈Gx(ε0)〉 and the energy loss
〈0.02ε′Ψc(ε′)〉[2] in a circulation are the same showing the energy balance in five digits. Conver-
gence energies 〈RGε(ε0)〉+− take appreciable values though smaller than E〈Gx(ε0)〉. The larger
value of 〈RGε(ε0)〉 in larger r gives faster relaxation though not shown here. In these results, we
feel the providence in nature.
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Fig. 1: Variation of Ψsn(ε0) for r = 0
started from two initial distributions, low
mean energy (solid) and high mean en-
ergy (dotted), at every ten operations of
L(ε′0,ε0).

Fig. 2: Loop energy gain functions
LGε(ε0) (thin) and energy gain rates
RGε(ε0) (thick) for r = 1/2(dotted),
0(solid) and −1/2(dashed).
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