Topic number: 2

Electron transport parameters and rate coefficients in He/CH₄/O₂ and He/CH₄/CO₂ mixtures

<u>N. Pinhão^(*)</u> and M. Vranic¹

Nuclear and Technological Institute, Estrada Nacional 10, 2686-953 Sacavém, Portugal ^(*) npinhao@itn.pt

Introduction

The use of non-thermal plasmas in the production of hydrogen, *Syngas*, and more complex hydrocarbons from methane mixtures is an interesting alternative to conventional processes [1]. Mixtures of methane with an oxidant are commonly used, the most common oxidants being O_2 and CO_2 [2]. Recently high conversion rates and selectivities were reported [3] using He/CH₄/O₂ and He/CH₄/CO₂ mixtures. In this work we present electron transport parameters and rate coefficients in He/CH₄/O₂ and He/CH₄/CO₂ mixtures as a first step in the development of a model of a dielectric barrier discharge in these mixtures.

Cross Sections and numerical method

The results were computed solving the electron Boltzmann equation for the hydrodynamic regime using the method described in [4]. The cross sections for He, O₂ and CO₂ were taken from [5] while methane cross sections were adjusted to swarm data using as initial set data from [6, 7] complemented by recent results from [8, 9]. The final set includes the momentum transfer cross section, two cross sections for vibrational excitation of modes $v_2 + v_4$ and $v_1 + v_3$, the dissociation cross sections for the formation of CH₃, CH₂ and CH radicals, the formation of H⁻ and CH₂⁻ negative ions, and CH₄⁺, CH₃⁺, CH₂⁺, CH⁺, C⁺, H₂⁺ and H⁺ ions.

Results

The results were obtained keeping the ratio of concentrations between methane and the oxidant constant at $[CH_4]:[O_2] = 2.0$ and $[CH_4]:[CO_2] = 1.0$, respectively, while the helium concentration varied between 0% and 80%. The reduced electric field, E/n, ranged from 0.5 Td to 500 Td.

Fig. 1: Results in He/CH₄/CO₂ mixtures: (a) Isotropic component of the electron energy distribution function at E/n = 50 Td. Vertical lines: threshold values for vibrational excitation, dissociation, ionisation and attachment. (b) Variation of the density-normalized collision frequency for dissociation of CH₄ into CH₃, with E/n for several helium concentrations.

The electron energy distribution function (eedf) is shifted to higher values as the helium concentration increases (Fig. 1-(a)). As a result of the increase of the *eedf*, and in spite of the reduction of

¹Present address: GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Lisboa, Portugal

methane concentration, the collision frequencies for methane excitation and ionisation processes increase also with the helium concentration (Fig. 1-(b)). This variation is bigger at low E/n values, and decreases as the reduced field increases.

Fig. 2: Effect of helium concentration on (a) the density-normalized ionisation and attachment coefficients in He/CH₄/O₂ mixtures at a constant ratio [CH₄]:[O₂] = 2.0 (black lines: α/n ; gray lines: η/n) and (b) the drift velocity in He/CH₄/CO₂ mixtures at a constant ratio [CH₄]:[CO₂] = 1.0

An increase in the helium concentration leads to a shift in the ionisation and attachment coefficients curves to lower E/n values (Fig 2-(a)). The E/n value for $\alpha/n = \eta/n$ decreases from above 100 Td to approximately 30 Td when the helium concentration changes from 0% to 80%.

In He/CH₄/CO₂ mixtures the drift velocity also increases with the helium concentration except in the range 6 to 50 Td where the curves for different helium concentrations cross each other in two points, resulting in an inversion of the relative order (Fig. 2-(b)). In He/CH₄/O₂ mixtures the above double crossing does not occur, only a single crossing is observed.

Acknowledgments

We acknowledge financial support from FCT under research contract PTDC/EQU-EQU/65126/2006.

References

- [1] A. Indarto, J. Choi, H. Lee, and H. Song, Journal of Natural Gas Chemistry, 15 (2006) 87-92
- [2] Pietruszka, Barbara and Heintze, Moritz, Catalysis Today, 90 (2004) 151-158
- [3] N.R. Pinhão, A. Janeco, A.C. Ferreira, and J.B. Branco, *Proceedings ISPC 19*, Bochum, (2009), edited by A. von Keudell, J. Winter, M. Böke, V. Schulz-von der Gathen, URL: www.ispc-conference.org
- [4] P. Segur, M. Yousfi and M.C. Bordage, J. Phys. D: Appl. Phys. 17 (1984) 2199-2214
- [5] A.V. Phelps, http://jilawww.colorado.edu/~avp/collision_data
- [6] M.C. Bordage Doctorat D'Etat These Univ. Paul Sabatier de Toulouse, France (1995)
- [7] T. Shirai et al. At. Data Nucl. data Tables 80 (2002) 147-204
- [8] P. Rawat et al. Int. J. Mass Spectrometry 277 (2008) 96–102
- [9] D.A. Erwin and J.A. Kunc J. Appl. Phys. 103 (2008) 064906